

TRUST AND REPUTATION MECHANISMS FOR MULTI-AGENT ROBOTIC SYSTEMS

Igor A. Zikratov*, Ilya S. Lebedev*, Andrei V. Gurtov Aalto University & ITMO University 24.08.2014

New2an

Overview

- Analyze the functioning of multi-agent robotic systems with decentralized control in conditions of destructive information influences from robots-saboteurs
- Suggest a mechanism of information security in which robotsagents produce levels of trust to each other on the basis of the situation analysis developing on a certain step of an iterative algorithm with the use of onboard sensor devices.
- We give an example showing the use of the developed mechanism for detection of saboteurs in different situations in using the basic algorithm of distribution of targets in a group of robots.

Distribution of targets in the presence of saboteurs

Circles – robots

- Grey circles saboteurs
- Squares targets
- Arrows communication links between robots

D_1	3.2	1.0
D_2	1.9	2.5
D_3	0.7	5.4
D_4	3.6	3.5
D_5	0.8	3.4
D_6	4.2	5.6
D_7	5.8	1.4
D_8	3.1	0.2

Target function

Assume there are *M* targets and a group of robots which consists of *N* robots

$$\mathbf{Y}_{c} = \sum_{j,l=1}^{N} d_{jl} n_{jl} \to max, \tag{1}$$

$$\sum_{\substack{l=1\\N}}^{N} n_{jl} = 1,$$

$$\sum_{\substack{j=1\\d_{jl} \ge 0}}^{N} n_{jl} = n_l^{max},$$

Matrix "D" with dimensionality (*N*, *M*), which elements are estimates of efficiency of the robot "j" for target "l"

 $n_{jl} = \begin{cases} 1, & \text{if "}j\text{"robot selects "}l\text{"target,} \\ 0, & \text{otherwise.} \end{cases}$

Here $j = \overline{1, N}$, $l = \overline{1, N}$, a n_l^{max} is a necessary number of robots which must select "l" target.

Definitions

Trust (W)

Reputation (T)

Readiness to interact with an agent

Agent is blocked if trust is below a threshold

Public opinion created over time about qualities of an agent

Sum of poisitive and negative votes assessing agent's behavior

Algorithm

- Step 1. Each robot-agent creates a vector of efficiency estimates, and tells the estimates to all members of a group
- Step 2. Agents by means of their sensors execute verification of data in an array **D**.
- Step 3. Computation of agents' reputation.
- Step 4. Accounting of change of reputation level.
- Step 5. Calculation of trust level

The Institute For Step 3: Array of action estimates of members of a group

$$w_i = \frac{\gamma^+}{\gamma^+ + \gamma^-}$$

Trust level is the ratio of positive voices

Trust vector of all agents

T=[0.8,1.0,0.75,0.83,0.33,0.6,0.75,0.33].

Array S of reputation level estimates of agents

Reputation increases if agents give each other positive marks Or if they give same marks to another agent, otherwise decreasing

	1	2	3	4	5	6	7	8
1		2	1	4	-3	2	3	-1
2	2		1	2	-2	2	2	-2
3	1	1		2	-1	2	0	-2
4	4	2	2		-4	2	3	-1
5	-3	-2	-1	-4		-2	-3	1
6	2	2	2	2	-2		2	-2
7	3	2	0	3	-3	2		0
8	-1	-2	-2	-1	2	-2	0	

Step 4: Influence of parameter "a" on the reputation level with an increase in the number of iterations "I"

Step 5: Trust Computation

$$w_i = \frac{p_i}{p_i + n_i},\tag{4}$$

where

$$p_i = \sum_{\substack{j=0\\N}}^{N} h_{ij} \cdot q_j \cdot F(l),$$
$$n_i = \sum_{\substack{j=0\\j=0}}^{N} g_{ij} \cdot q_j \cdot F(l).$$

Values h_{ij} and g_{ij} are defined by the analysis of estimates v_{ij} of array V:

- $h_{ij} = \begin{cases} 1, & \text{if robot "}j\text{" positively estimated actions of robot "}i\text{",} \\ 0, & \text{otherwise} \end{cases}$
- $g_{ij} = \begin{cases} 1, & \text{if robot "}j\text{" negatively estimated actions of robot "}i\text{",} \\ 0, & \text{otherwise.} \end{cases}$

TECHNOLOGY Characteristics of agents on the trust level T and reputation & trust level W

Robots are placed to two clusters

W = [0.96, 1.0, 0.94, 0.97, 0.071, 0.9, 0.95, 0.08]

Situation development on the second step of iterative process of target distribution

Inter-cluster distance increases between legitimate agents and sabouterus as robots change their position and another iteration of target distribution is carried out

Operation in case of appearance of a new agent

A new robot R9 starts with zero reputation, but it quickly increases if it behaves correctly (subject to parameter a)

Conclusions

- Considered a swarm of mobile robots that act together to achieve a set of goals
- Designed a mechanism for determining trust to other robots in a group
- Trust increases with
 - Correct assessment of others' behavior
 - Correct execution of the task
- Iterative process